direct product, metabelian, soluble, monomial
Aliases: C3×C24⋊C6, C22⋊A4⋊3C6, C23⋊1(C3×A4), C22≀C2⋊C32, C24⋊2(C3×C6), (C22×C6)⋊1A4, (C23×C6)⋊1C6, C22.2(C6×A4), (C3×C22≀C2)⋊C3, (C3×C22⋊A4)⋊1C2, (C2×C6).10(C2×A4), SmallGroup(288,634)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C24 — C23×C6 — C3×C22⋊A4 — C3×C24⋊C6 |
C24 — C3×C24⋊C6 |
Generators and relations for C3×C24⋊C6
G = < a,b,c,d,e,f | a3=b2=c2=d2=e2=f6=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=ec=ce, cd=dc, fcf-1=bcde, fef-1=de=ed, fdf-1=e >
Subgroups: 444 in 86 conjugacy classes, 18 normal (12 characteristic)
C1, C2, C3, C3, C4, C22, C22, C6, C2×C4, D4, C23, C23, C32, C12, A4, C2×C6, C2×C6, C22⋊C4, C2×D4, C24, C3×C6, C2×C12, C3×D4, C2×A4, C22×C6, C22×C6, C22≀C2, C3×A4, C3×C22⋊C4, C6×D4, C22⋊A4, C23×C6, C6×A4, C24⋊C6, C3×C22≀C2, C3×C22⋊A4, C3×C24⋊C6
Quotients: C1, C2, C3, C6, C32, A4, C3×C6, C2×A4, C3×A4, C6×A4, C24⋊C6, C3×C24⋊C6
Character table of C3×C24⋊C6
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 12A | 12B | |
size | 1 | 3 | 4 | 6 | 6 | 1 | 1 | 16 | 16 | 16 | 16 | 16 | 16 | 12 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 16 | 16 | 16 | 16 | 16 | 16 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ65 | ζ6 | ζ65 | -1 | ζ6 | -1 | ζ6 | ζ65 | linear of order 6 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | -1 | -1 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | linear of order 3 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ9 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | -1 | -1 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ11 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ12 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ6 | ζ65 | ζ6 | -1 | ζ65 | -1 | ζ65 | ζ6 | linear of order 6 |
ρ13 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | -1 | -1 | linear of order 6 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | linear of order 3 |
ρ15 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ16 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ65 | -1 | ζ65 | -1 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ17 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ6 | -1 | ζ6 | -1 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ18 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | -1 | -1 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | linear of order 6 |
ρ19 | 3 | 3 | 3 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from A4 |
ρ20 | 3 | 3 | -3 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | -3 | -3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from C2×A4 |
ρ21 | 3 | 3 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | complex lifted from C3×A4 |
ρ22 | 3 | 3 | -3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -3-3√-3/2 | -3+3√-3/2 | 3+3√-3/2 | 3-3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | complex lifted from C6×A4 |
ρ23 | 3 | 3 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | complex lifted from C3×A4 |
ρ24 | 3 | 3 | -3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -3+3√-3/2 | -3-3√-3/2 | 3-3√-3/2 | 3+3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | complex lifted from C6×A4 |
ρ25 | 6 | -2 | 0 | -2 | 2 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C6 |
ρ26 | 6 | -2 | 0 | 2 | -2 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C6 |
ρ27 | 6 | -2 | 0 | 2 | -2 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | -1-√-3 | 1+√-3 | -1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 6 | -2 | 0 | 2 | -2 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | -1+√-3 | 1-√-3 | -1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 6 | -2 | 0 | -2 | 2 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 1+√-3 | -1-√-3 | 1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 6 | -2 | 0 | -2 | 2 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 1-√-3 | -1+√-3 | 1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 6 4)(2 5 3)(7 21 13)(8 22 14)(9 23 15)(10 24 16)(11 19 17)(12 20 18)
(2 15)(3 23)(5 9)(7 11)(13 17)(19 21)
(2 17)(3 19)(5 11)(7 9)(13 15)(21 23)
(1 18)(2 15)(3 23)(4 20)(5 9)(6 12)(7 11)(8 10)(13 17)(14 16)(19 21)(22 24)
(1 14)(2 17)(3 19)(4 22)(5 11)(6 8)(7 9)(10 12)(13 15)(16 18)(20 24)(21 23)
(1 2)(3 4)(5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
G:=sub<Sym(24)| (1,6,4)(2,5,3)(7,21,13)(8,22,14)(9,23,15)(10,24,16)(11,19,17)(12,20,18), (2,15)(3,23)(5,9)(7,11)(13,17)(19,21), (2,17)(3,19)(5,11)(7,9)(13,15)(21,23), (1,18)(2,15)(3,23)(4,20)(5,9)(6,12)(7,11)(8,10)(13,17)(14,16)(19,21)(22,24), (1,14)(2,17)(3,19)(4,22)(5,11)(6,8)(7,9)(10,12)(13,15)(16,18)(20,24)(21,23), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;
G:=Group( (1,6,4)(2,5,3)(7,21,13)(8,22,14)(9,23,15)(10,24,16)(11,19,17)(12,20,18), (2,15)(3,23)(5,9)(7,11)(13,17)(19,21), (2,17)(3,19)(5,11)(7,9)(13,15)(21,23), (1,18)(2,15)(3,23)(4,20)(5,9)(6,12)(7,11)(8,10)(13,17)(14,16)(19,21)(22,24), (1,14)(2,17)(3,19)(4,22)(5,11)(6,8)(7,9)(10,12)(13,15)(16,18)(20,24)(21,23), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );
G=PermutationGroup([[(1,6,4),(2,5,3),(7,21,13),(8,22,14),(9,23,15),(10,24,16),(11,19,17),(12,20,18)], [(2,15),(3,23),(5,9),(7,11),(13,17),(19,21)], [(2,17),(3,19),(5,11),(7,9),(13,15),(21,23)], [(1,18),(2,15),(3,23),(4,20),(5,9),(6,12),(7,11),(8,10),(13,17),(14,16),(19,21),(22,24)], [(1,14),(2,17),(3,19),(4,22),(5,11),(6,8),(7,9),(10,12),(13,15),(16,18),(20,24),(21,23)], [(1,2),(3,4),(5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])
G:=TransitiveGroup(24,698);
Matrix representation of C3×C24⋊C6 ►in GL6(𝔽13)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
0 | 12 | 1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 1 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 12 | 0 | 0 | 0 |
1 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 1 |
0 | 0 | 0 | 12 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 1 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 1 |
0 | 0 | 0 | 12 | 1 | 0 |
0 | 12 | 1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 1 | 12 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[0,0,1,0,0,0,12,12,12,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,12,12,12],[0,1,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,0,0,12,12,12,0,0,0,0,0,1,0,0,0,0,1,0],[12,12,12,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,12,12,0,0,0,0,0,1,0,0,0,0,1,0],[0,0,1,0,0,0,12,12,12,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,12,12,12,0,0,0,1,0,0],[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0] >;
C3×C24⋊C6 in GAP, Magma, Sage, TeX
C_3\times C_2^4\rtimes C_6
% in TeX
G:=Group("C3xC2^4:C6");
// GroupNames label
G:=SmallGroup(288,634);
// by ID
G=gap.SmallGroup(288,634);
# by ID
G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,2523,514,6304,956,3036,5305]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^2=f^6=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=e*c=c*e,c*d=d*c,f*c*f^-1=b*c*d*e,f*e*f^-1=d*e=e*d,f*d*f^-1=e>;
// generators/relations
Export